Error Reduction based Demand Forecasting: An Appraisal of Kerala Power System
نویسندگان
چکیده
منابع مشابه
Forecasting Demand for Electric Power
We are developing a forecaster for daily extremes of demand for electric power encountered in the service area of a large midwestern utility and using this application as a testbed for approaches to input dimension reduction and decomposition of network training. Projection pursuit regression representations and the ability of algorithms like SIR to quickly find reasonable weighting vectors ena...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولChina’s Copper Demand Forecasting Based on System Dynamics Model
Copper demand for a country's copper industry has a greater pull effect. China's copper consumption in 2015 has accounted for 50% of the world. The scientific forecast of China's copper demands trend is also an important basis for analyzing its future environmental impact. This paper assumes that China's economy will be developing high, medium and low scenarios, and forecasts economic and socia...
متن کاملDemand Forecasting: Evidence-based Methods
In recent decades, much comparative testing has been conducted to determine which forecasting methods are more effective under given conditions. This evidence-based approach leads to conclusions that differ substantially from current practice, . This paper summarizes the primary findings on what to do – and what not to do. When quantitative data are scarce, impose structure by using expert surv...
متن کاملCross Entropy Error Function in Neural Networks: Forecasting Gasoline Demand
This paper applies artificial neural networks to forecast gasoline consumption. The ANN is implemented using the cross entropy error function in the training stage. The cross entropy function is proven to accelerate the backpropagation algorithm and to provide good overall network performance with relatively short stagnation periods. To forecast gasoline consumption (GC), the ANN uses previous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2018
ISSN: 0975-8887
DOI: 10.5120/ijca2018917726